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ABSTRACT

The effort to understand CSR in whispering gallery modes has led
to a general scheme for studying fields in a rectangular chamber of
varying width. It works in the frequency domain, with Fourier
development only in the vertical coordinate. The calculation
reduces to integration of a simple system of ordinary differential
equations, with arc length s as the independent variable. A new
scheme to handle a singular or highly concentrated charge/current
is an essential feature. An implicit integration rule appears to
avoid the approximation of slowly varying amplitude. The time for
the field calculation is so short that it will be negligible compared
to that for charge/current construction and particle pushing in a
self-consistent macroparticle simulation, which could be in three
dimensions.
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Whispering Gallery Modes
Fields excited by a bunch circulating in a smooth torus of constant
rectangular cross-section can be calculated in terms of high order
Bessel functions, including effects of wall resistance.
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Experimental Spectra
Spectrum of CSR measured at NSLS-VUV (BNL) in 2001, by an
interferometer and and also by microwave techniques.

Figure: Far IR spectrum measured at NSLS
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Table: Theoretical frequencies compared to data from VUV

Exp. Thy. Exp. Thy.
0.80 0.827 6.10 6.31
0.93 — 7.25 7.32
1.32 1.21 9.00 8.32
1.57 1.60 10.0 9.29

2.10* 2.04 11.1 10.28
2.40 2.48 12.0 11.29

2.76* 2.94 12.8 12.33
3.10* 3.26 13.8 13.31
3.66* 3.62 15.0 14.3
3.88* 3.90 15.7-15.9 15.3
4.20 4.38 16.7 16.3
5.25 5.34 18.0 17.3

18.8* 18.3
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IR Vacuum Chamber at the Canadian Light Source

Figure: Fluted vacuum chamber at the FIR dipole with bending radius
R = 7.143 m and deflection angle θ = 15◦. The maximum excursion of
the outer wall from the beam (——) is 33 cm.

Experiments: (a) diode detector, sees radiation reflected backward
from photon absorber and mirror support assembly. (b) signal
picked up by M1 mirror, sent to long interferometer (resolution to
∆k = 0.0009cm−1.).
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CSR spectrum at CLS

Figure: Peak spacing ∆k = ∆λ−1 = 0.074cm−1.

Position of peaks extremely stable over years, and independent of
machine set-up (current, energy, bunch length, number of bunches,
etc.) and IR beamline hardware.
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CLS spectrum and whispering gallery theory

To fit the peak spacing of ∆k = 0.074cm−1 with the toroidal
model, the distance from the beam to the outer wall in the model
has to be 33 cm, equal to the maximum distance in the flared
chamber.

In a perturbative theory, treating the lowest order effect of a wall
excursion, this is explained qualitatively (to be published). A
distinctly local short wave length oscillation builds up in the region
of the flare, making peaks in the spectrum that are not the
whispering gallery modes of the full toroidal chamber. A more
quantitative calculation of the spectrum is one goal of the effort
described in this talk.
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Direct observation of CSR wake fields in the flared chamber
Although we have not yet understood the interferometer data
extending to the THz, we have simulated major features of the
signal in the backward diode detector (35-110 GHz). This by a
time domain integration of the Maxwell curl equations in
curvilinear coordinates (after FT in the vertical coordinate).
(Bizzozero’s thesis at UNM, discontinuous Galerkin method, PRL
114, 204801 (2015))
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Figure: Upper graph shows simulated diode signal, with peaks correlated
to experimental peaks A-G (red curve in lower graph)

The distance A-B to the first wake pulse is 12cm, close to the
13.5cm spacing of lines in the interferogram, the reciprocal of the
spacing 0.074 cm−1 of the frequency spectrum.
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Calculated field pattern in flared chamber

Figure: Ez at entrance to backword port. Source is ribbon line charge
with 2mm Gaussian bunch form.

Fine detail displayed in a sophisticated finite element method –
discontinuous Galerkin. Drawback: expensive for very short driving
bunch. Hard to get high frequency spectrum.
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Five Star (*****) Computational Method
Use standard accelerator (Frenet-Serret) coordinates (s, x , y), with
reference trajectory in plane y = 0 consisting of bends and
straights in arbitrary sequence. Rectangular chamber with top and
bottom plates at y = ±g , inner and outer sidewalls at x = x−(s)
and x+(s). Perfectly conducting, to start.

All field and charge/current components represented as

f (s, x , y , t) =
∞∑
p=0

∫∞
−∞ dke ik(s−βct)ϕp(y)f̂p(s, x , k) , (1)

where the vertical Fourier mode ϕp is chosen to meet boundary
conditions at y = ±g
Think of (1) as the FT with respect to beam frame coordinate
s − βct at fixed s. The representation is general, but contains
primarily right-moving waves if and only if f̂ (s, x , k) is slowly
varying in s.
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Two independent wave equations determine all fields
All field components are expressed in terms of Êyp and Ĥyp and
their derivatives w.r.t. x and s. Moreover, Êyp and Ĥyp are
determined by independent wave equations, not coupled even by
boundary conditions (for perfect conductors). Within a bend of
radius ρ,

∂2u

∂s2
+ 2ik

∂u

∂s
=

−
(x + ρ

ρ

)2[∂2u
∂x2

+
1

x + ρ

∂u

∂x
+

(
γ2p −

( kρ

x + ρ

)2)
u − S

]
,

γ2p = k2 − α2
p , αp = πp/2g . (2)

Slowly varying amplitude approximation (SVA, paraxial approx.):

‖∂
2u

∂s2
‖ � 2k‖∂u

∂s
‖ , k > k0 = shielding cutoff
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Proceed with SVA and discretize in x , s
Writing unj ≈ u(sn, xj), use leap-frog in s and a 3-point rule in x :

un+1
j − un−1

j

2∆s
=

i

2k

(xj + ρ
ρ

)2[unj+1 − 2unj + unj−1

∆x2
+

1

xj + ρ

unj+1 − unj−1

2∆x
+

(
γ2p −

( kρ

xj + ρ

)2)
unj − S(xj)

]
. (3)

But this won’t work if S is a line charge, as we assume in a first try:

S = ŜEp(k , x) = κ(k , p)δ(x) .

The remedy: make a change of dependent variable so that the
effective source for the new variable v is regular:

u(x) = v(x) + ξ(x) , ξ(x) = κ(1 − x/2ρ)xθ(x) .
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Effective source for v(x) = u(x) − ξ(x)

v satisfies the same wave equation as u, but with a smooth source
instead of a delta function.

A similar change of variable can be done for a source of small but
finite width, to make the effective source broader and smoother.
Do that in a macroparticle simulation!
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Enforcing boundary conditions on the side walls, x = x±(s)

For constant cross section, x± =const., the conditions are

vE (x±) = −ξE (x±) , ∂xvH(x±) = −∂xξH(x±) . (4)

For variable cross section with walls at x±(s), the conditions are

vE (x±(s)) = −ξE (x±(s)) ,[
ts(s)∂xuH −

tx(s)

1 + x/ρ
(ikuH + ∂suH)

]
x=x±(s)

= 0 ,

where (ts , tx) is the tangent vector to the relevant wall.

All boundary values can be expressed in terms of field values at
interior mesh points x2, · · · , xn−1 so that we evolve n − 2
unknowns with n − 2 linear differential equations.
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Result of the simple algorithm in Eq.(3):

End of last bend in BC2, LCLS-II, 10µm bunch length. Initial
condition: steady state solution in infinite straight pipe.
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Method applied to resistive wall heating and wake fields
R. Warnock and D. Bizzozero, Phys. Rev. Accel. Beams 19,
090705 (2016)

Used 5-point rule ( agrees with recent 3-point results).
Found energy deposited in resistive walls by perturbative
treatment of Poynting flux.
Very fast computation of longitudinal wake field for short
realistic bunch (LCLS-II, 10µm).
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Avoiding the Courant-Friedrichs-Lewy (CFL) condition

Stability of the s-integration requires ∆s < αk(∆x)2, where in our
case α ≈ 0.2. This can mean 30000 s-steps in going through a
bend, which seems a lot, but actually gives a much faster
computation than previous methods.

A standard way to avoid the CFL condition is to invoke an implicit
evolution algorithm, for instance the Crank-Nicolson or trapezoidal
method:

1

∆t

(
un+1 − un

)
=

1

2

(
f n(uxx , ux , u) + f n+1(uxx , ux , u)

)
When uxx and ux are given by a 3-point rule as in (3), we have a
tridiagonal system to solve for un+1 in terms of un.

The solution is fast and allows a much bigger ∆s, say 300 steps in
place of 30000. Cost per step not much larger.
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Avoiding the slowly varying amplitude approximation

Could we restore the neglected uss , thus getting the exact Maxwell
system? When using an explicit integrator, that leads to a gross
instability.

At a recent seminar at LBNL, I saw a second time derivative in a
so-called Crank-Nicolson scheme. See C. Benedetti et al., Proc.
ICAP 2012, THAA12.

Would that be allowed in our somewhat similar equation ?
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Beyond the SVA approximation with implicit integrator

After Benedetti et al. I tried the following (with F from (3)):

1

(∆s)2
(
un+1 − 2un + un−1

)
+

2ik

∆s

(
un+1 − un

)
=

1

2

(
F n(uxx , ux , u) + F n+1(uxx , ux , u)

)
.

This was found to be stable if 2k∆s � 1, which can be achieved
with the large ∆s allowed by the implicit integrator.

This is true at least for the smooth vacuum chamber, in which
case the computed uss is actually negligible (i.e., the SVA
approximation is good, as is expected in a smooth chamber).

The next big question: will the integration still be stable for a
corrugated chamber in which uss will not be negligible?
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Summary and Outlook
We have a fast and very simple way to compute fields of a
bunch in a rectangular chamber of variable width, through
any sequence of bends and straights.

Since the calculation is the easier the higher the frequency,
very short bunches can be treated.

Promising for self-consistent macroparticle simulation with
CSR and space charge in single-pass systems (bunch
compressors, etc.). Field calculation and Fourier
transformations a small part of the cost.

Hope to develop the code with Chris Mayes as part of BMAD,
with 3D charge/current.

New angles:

Explore the full Maxwell system without SVA, using implicit
integrator.

Impose periodicity in s, study local resonances within a period.
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Connection to stability theory of ODE’s

We can put the equation with second derivative into first order
form by defining w = du/ds, thus getting a first order system for
(u,w). Apply the trapezoidal rule to that system.

A great feature of the trapezoidal rule is that it is A-stable after
the definition of Dahlquist. An A-stable numerical integrator is one
that gives the correct asymptote of zero when applied to the trivial
equation du/ds = λu , Re λ < 0, for any step size ∆s. My guess
is that this good property of the trapezoidal rule will lead to a
stable solution of our complete Maxwell system cast in first order
form, even with boundary conditions for a corrugated wall.
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