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ABSTRACT

The effort to understand CSR in whispering gallery modes has led
to a general scheme for studying fields in a rectangular chamber of
varying width. It works in the frequency domain, with Fourier
development only in the vertical coordinate. The calculation
reduces to integration of a simple system of ordinary differential
equations, with arc length s as the independent variable. A new
scheme to handle a singular or highly concentrated charge/current
is an essential feature. An implicit integration rule appears to
avoid the approximation of slowly varying amplitude. The time for
the field calculation is so short that it will be negligible compared
to that for charge/current construction and particle pushing in a
self-consistent macroparticle simulation, which could be in three
dimensions.

2/25



Whispering Gallery Modes

Fields excited by a bunch circulating in a smooth torus of constant
rectangular cross-section can be calculated in terms of high order
Bessel functions, including effects of wall resistance.
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Experimental Spectra

Spectrum of CSR measured at NSLS-VUV (BNL) in 2001, by an

interferometer and and also by microwave techniques.
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Table: Theoretical frequencies compared to data from VUV

Exp. Thy. Exp. Thy.
0.80 0.827 6.10 6.31
0.93 — 7.25 7.32
1.32 1.21 9.00 8.32
1.57 1.60 10.0 9.29
2.10% 2.04 111 10.28
2.40 2.48 12.0 11.29
2.76% 2.94 12.8 12.33
3.10%* 3.26 13.8 13.31
3.66* 3.62 15.0 14.3
3.88%* 3.90 15.7-15.9 15.3
4.20 4.38 16.7 16.3
5.25 5.34 18.0 17.3

18.8* 18.3
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IR Vacuum Chamber at the Canadian Light Source
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Figure: Fluted vacuum chamber at the FIR dipole with bending radius
R = 7.143 m and deflection angle 8 = 15°. The maximum excursion of
the outer wall from the beam ( ) is 33 cm.

Experiments: (a) diode detector, sees radiation reflected backward
from photon absorber and mirror support assembly. (b) signal
picked up by M1 mirror, sent to long interferometer (resolution to
Ak = 0.0009cm1.).
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CSR spectrum at CLS
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Figure: Peak spacing Ak = A\~ = 0.074cm 1.

Position of peaks extremely stable over years, and independent of
machine set-up (current, energy, bunch length, number of bunches,
etc.) and IR beamline hardware.

7/25



CLS spectrum and whispering gallery theory

To fit the peak spacing of Ak = 0.074cm ™! with the toroidal
model, the distance from the beam to the outer wall in the model
has to be 33 cm, equal to the maximum distance in the flared
chamber.

In a perturbative theory, treating the lowest order effect of a wall
excursion, this is explained qualitatively (to be published). A
distinctly local short wave length oscillation builds up in the region
of the flare, making peaks in the spectrum that are not the
whispering gallery modes of the full toroidal chamber. A more
quantitative calculation of the spectrum is one goal of the effort
described in this talk.
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Direct observation of CSR wake fields in the flared chamber

Although we have not yet understood the interferometer data
extending to the THz, we have simulated major features of the
signal in the backward diode detector (35-110 GHz). This by a
time domain integration of the Maxwell curl equations in
curvilinear coordinates (after FT in the vertical coordinate).
(Bizzozero's thesis at UNM, discontinuous Galerkin method, PRL
114, 204801 (2015))

1%

Figure 5.1: Physical laboratory frame (top) and Frenet-Serret transformed frame
(bottom). The dashed line indicates the source’s trajectory, the region between the
dotted blue lines indicate where the curvature is non-zero, and the red dots indicate
points where the boundary geometry transitions
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Figure: Upper graph shows simulated diode signal, with peaks correlated
to experimental peaks A-G (red curve in lower graph)

The distance A-B to the first wake pulse is 12cm, close to the
13.5cm spacing of lines in the interferogram, the reciprocal of the
spacing 0.074 cm™! of the frequency spectrum.
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Calculated field pattern in flared chamber

-0.05)

Figure: E, at entrance to backword port. Source is ribbon line charge
with 2mm Gaussian bunch form.

Fine detail displayed in a sophisticated finite element method —
discontinuous Galerkin. Drawback: expensive for very short driving

bunch. Hard to get high frequency spectrum.
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Five Star (*****) Computational Method

Use standard accelerator (Frenet-Serret) coordinates (s, x,y), with
reference trajectory in plane y = 0 consisting of bends and
straights in arbitrary sequence. Rectangular chamber with top and
bottom plates at y = £g, inner and outer sidewalls at x = x_(s)
and xy (s). Perfectly conducting, to start.

All field and charge/current components represented as

o0

(e.0]
oyt =Y | det P his k), (1)
p=0""%°

where the vertical Fourier mode ¢, is chosen to meet boundary
conditions at y = +g

Think of (1) as the FT with respect to beam frame coordinate

s — et at fixed s. The representation is general, but contains
primarily right-moving waves if and only if f(s,x, k) is slowly
varying in s.
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Two independent wave equations determine all fields

All field components are expressed in terms of Eyp and qup and
their derivatives w.r.t. x and s. Moreover, Eyp and Qyp are
determined by independent wave equations, not coupled even by
boundary conditions (for perfect conductors). Within a bend of
radius p,

0%u ou

35 2—1—21ka

x+p.2[0%u 1 du > kp 2
—( P ) 6><2+X+pa)<+<y"_(x+p) )u—S},

2 2 2
yp:k — 0,

xp =TIp/2g . (2)
Slowly varying amplitude approximation (SVA, paraxial approx.):

|| || < 2k|| || , k> ko = shielding cutoff
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Proceed with SVA and discretize in x, s
Writing uf ~ u(sn, X;), use leap-frog in s and a 3-point rule in x:

2As 2%\ p Ax2

1 Uiy —uly 2 kp 2\ ,
- " S(x)| . (3
e oax t\% (Xj+p) ul =S0g)| - (3)

But this won't work if S is a line charge, as we assume in a first try:
S= §Ep(kax) = K(k>P)5(X) .

The remedy: make a change of dependent variable so that the
effective source for the new variable v is regular:

ulx) =v(x)+&(x), &(x) = k(1 —x/2p)x0(x) .
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Effective source for v(x) = u(x) — &(x)

v satisfies the same wave equation as u, but with a smooth source
instead of a delta function.

nnnnnnnnnnnnnnnnnnnn

A similar change of variable can be done for a source of small but
finite width, to make the effective source broader and smoother.
Do that in a macroparticle simulation!
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Enforcing boundary conditions on the side walls, x = x(s)
For constant cross section, x4+ =const., the conditions are
VE(xe) = —&e(xt) ,  OxvH(xt) = —0xEn(xt) . (4)

For variable cross section with walls at x4 (s), the conditions are

Ve (xx(s)) = —&e(xx(s))
ts(s)aXuH - ]_t_t(j}p(’kuH + asUH) ] =0 )

where (ts, ty) is the tangent vector to the relevant wall.

All boundary values can be expressed in terms of field values at
interior mesh points xp, -+, X,_1 so that we evolve n — 2
unknowns with n — 2 linear differential equations.
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A

Result of the simple algorithm in Eq.(3

End of last bend in BC2, LCLS-II, 10pm bunch length. Initial
condition: steady state solution in infinite straight pipe.
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Method applied to resistive wall heating and wake fields
R. Warnock and D. Bizzozero, Phys. Rev. Accel. Beams 19,
090705 (2016)

@ Used 5-point rule ( agrees with recent 3-point results).

@ Found energy deposited in resistive walls by perturbative
treatment of Poynting flux.

@ Very fast computation of longitudinal wake field for short
realistic bunch (LCLS-II, 10um).

Figure: Energy radiated (blue) and absorbed (red) in bend and following
straight (LCLS-Il, BC2 final bend)
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Avoiding the Courant-Friedrichs-Lewy (CFL) condition

Stability of the s-integration requires As < ock(Ax)?, where in our
case & ~ 0.2. This can mean 30000 s-steps in going through a
bend, which seems a lot, but actually gives a much faster
computation than previous methods.

A standard way to avoid the CFL condition is to invoke an implicit
evolution algorithm, for instance the Crank-Nicolson or trapezoidal
method:

1

E(un—kl . un) —

(F" (sey Uy u) + £ (e, 1y u))

N

When uy, and uy are given by a 3-point rule as in (3), we have a
tridiagonal system to solve for u"*! in terms of u”.

The solution is fast and allows a much bigger As, say 300 steps in
place of 30000. Cost per step not much larger.
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Avoiding the slowly varying amplitude approximation

Could we restore the neglected ugs, thus getting the exact Maxwell
system? When using an explicit integrator, that leads to a gross
instability.

At a recent seminar at LBNL, | saw a second time derivative in a
so-called Crank-Nicolson scheme. See C. Benedetti et al., Proc.
ICAP 2012, THAA12.

In INF&RNO, the evolution equation for the laser enve-
Tope, Eq. 1, is discretized in time using a Crank-Nicholson
scheme which reads
G+l _ggn 4 gl
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Would that be allowed in our somewhat similar equation 7
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Beyond the SVA approximation with implicit integrator
After Benedetti et al. | tried the following (with F from (3)):

1
(As)?

2ik
As

—

un+1 —ou"+ unfl) + (un+1 _ un) _

(F"(usoey txy ) + F Y (U, Uy, u)) .

N

This was found to be stable if 2kAs > 1, which can be achieved
with the large As allowed by the implicit integrator.

This is true at least for the smooth vacuum chamber, in which
case the computed uss is actually negligible (i.e., the SVA
approximation is good, as is expected in a smooth chamber).

The next big question: will the integration still be stable for a
corrugated chamber in which uss will not be negligible?
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Summary and Outlook

@ We have a fast and very simple way to compute fields of a
bunch in a rectangular chamber of variable width, through
any sequence of bends and straights.

@ Since the calculation is the easier the higher the frequency,
very short bunches can be treated.

@ Promising for self-consistent macroparticle simulation with
CSR and space charge in single-pass systems (bunch
compressors, etc.). Field calculation and Fourier
transformations a small part of the cost.

@ Hope to develop the code with Chris Mayes as part of BMAD,
with 3D charge/current.

New angles:
@ Explore the full Maxwell system without SVA, using implicit

integrator.
@ Impose periodicity in s, study local resonances within a period.
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Connection to stability theory of ODE's

We can put the equation with second derivative into first order
form by defining w = du/ds, thus getting a first order system for
(uy,w). Apply the trapezoidal rule to that system.

A great feature of the trapezoidal rule is that it is A-stable after
the definition of Dahlquist. An A-stable numerical integrator is one
that gives the correct asymptote of zero when applied to the trivial
equation du/ds = Au, Re A <0, for any step size As. My guess
is that this good property of the trapezoidal rule will lead to a
stable solution of our complete Maxwell system cast in first order
form, even with boundary conditions for a corrugated wall.
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Some New Methods for Numerical Solution

of Nonlinear Equations, with Suggested
Applications in § Matrix Theog*)
Robert L. Wamockﬁ
Physikalisches Institut der Universitit Bonn

and

Department of Physics, Imperial College, London S. W. 7

Lectures at the

Physikalisches Institut der Universitdt Bonn

February, 1972

Abstract

This is an introduction to some new methods for numerical solution
of nonlinear equations, written from the point of view of a high energy
physicist. The methods are based on imbedding the original nonlinear
operator in a family of operators depending on a parameter. The original

problem is solved by means of a differential equation, in which the:

T PD! as the i d variable. This is a general and
effective technique, which appears to be quite suitable for nonlinear

problems in scattering theory. Examples of such problems are presented.
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Zuppa Arcidossana

By Mark Bittman ~ YIELD 4 servings

TIME 25 minutes

INGREDIENTS

2 tablespoons olive oil

Ya pound sweet Italian sausage,
removed from casings

1 cup 1/2-inch-diced carrots
1 large onion, chopped

3 or 4 cloves garlic, chopped
Salt

black pepper

1 cup stale bread (use coarse,
country-style bread), cut in 1/2-inch
cubes

2 pound spinach, trimmed, washed
and roughly chopped

Y to ¥z cup ricotta salata, cut in 1/2-
inch cubes (feta may be substituted)
¥ cup freshly chopped parsley,
optional

PREPARATION
Step1

Put oil in a large pot or deep skillet and brown sausage over medium-low heat,
stirring occasionally. When sausage is cooked through and leaving brown bits
in pan, add carrots, onion and garlic, and continue to cook until vegetables
begin to soften and brown, about 10 minutes. Sprinkle with salt and pepper.

Step 2

‘Add bread to pan and stir for a minute or 2; add spinach and continue cooking
Jjust until it wilts, a couple of minutes.

Step3

Add about 2 cups water and stir to loosen any remaining brown bits from pan.
This is more of a stew than a soup, but there should be some broth, so add
another cup of water if necessary. When broth is consistency of thin gravy, ladle
stew into serving bowls and top with cheese and some freshly chopped parsley
if you have it. Serve immediately.

PRIVATE NOTES

Leave a Private Note on this recipe and see it here.

Featured in: A Soup Only Tuscany Could Make (http://www.nytimes.com/2009/04/29/dining/29mini.html).
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